新闻资讯
NEWS & INFORMATION
您现在的位置:
首页
/
/
胶粘剂的粘合机理(涂料附着力机理可借鉴)

胶粘剂的粘合机理(涂料附着力机理可借鉴)

  • 分类:新闻动态
  • 作者:
  • 来源:
  • 发布时间:2023-05-18
  • 访问量:0

【概要描述】粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。以下介绍几个方面的粘接作用机理。这些胶黏剂的粘合机理,对于我们工程师在解决研究涂料涂层在不同底材上的附着力问题也是有很大借鉴作用。

胶粘剂的粘合机理(涂料附着力机理可借鉴)

【概要描述】粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。以下介绍几个方面的粘接作用机理。这些胶黏剂的粘合机理,对于我们工程师在解决研究涂料涂层在不同底材上的附着力问题也是有很大借鉴作用。

  • 分类:新闻动态
  • 作者:
  • 来源:
  • 发布时间:2023-05-18
  • 访问量:0
详情

粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。以下介绍几个方面的粘接作用机理。这些胶黏剂的粘合机理,对于我们工程师在解决研究涂料涂层在不同底材上的附着力问题也是有很大借鉴作用。

一、吸附理论

人们把固体对胶粘剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。

理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德华引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶粘剂分子与被粘物表面分子的作用过程有两个过程:

第一阶段是液体胶粘剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近。在此过程中,升温、施加接触压力和降低胶粘剂粘度等都有利于布朗运动加强。

第二阶段是吸附力的产生。当胶粘剂与被粘物分子间的距离达到5-10Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。

根据计算,由于范德华力的作用,当两个理想的平面相距为10Å时,它们之间的引力强度可达10-1000MPa;当距离为3-4Å时,可达100-1000MPa。这个数值远远超过现代最好的结构胶粘剂所能达到的强度。因此,有人认为只要当两个物体接触很好时,即胶粘剂对粘接界面充分润湿,达到理想状态的情况下,仅色散力的作用,就足以产生很高的胶接强度。可是实际胶接强度与理论计算相差很大,这是因为固体的力学强度是一种力学性质,而不是分子性质,其大小取决于材料的每一个局部性质,而不等于分子作用力的总和。计算值是假定两个理想平面紧密接触,并保证界面层上各对分子间的作用同时遭到破坏时,也就不可能有保证各对分子之间的作用力同时发生。

胶粘剂的极性太高,有时候会严重妨碍湿润过程的进行而降低粘接力。分子间作用力是提供粘接力的因素,但不是唯一因素。在某些特殊情况下,其他因素也能起主导作用。

二、化学键形成理论

化学键理论认为胶粘剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德华作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普遍,要形成化学键必须满足一定的条件,所以不可能做到使胶粘剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。

三、弱界层理论

当液体胶粘剂不能很好浸润被粘体表面时,空气泡留在空隙中而形成弱区。又如,当中含杂质能溶于熔融态胶粘剂,而不溶于固化后的胶粘剂时,会在固体化后的胶粘层中形成另一相,在被粘体与胶粘剂整体间产生弱界面层(WBL)。产生WBL除工艺因素外,在聚合物成网或熔体相互作用的成型过程中,胶粘剂与表面吸附等热力学现象中产生界层结构的不均匀性也会导致。不均匀性界面层就会有WBL出现。这种WBL的应力松弛和裂纹的发展都会不同,因而极大地影响着材料和制品的整体性能。

四、扩散理论

两种聚合物在具有相容性的前提下,当它们相互紧密接触时,由于分子的布朗运动或链段的摆动产生相互扩散现象。这种扩散作用是穿越胶粘剂、被粘物的界面交织进行的。扩散的结果导致界面的消失和过渡区的产生。粘接体系借助扩散理论不能解释聚合物材料与金属、玻璃或其他硬体胶粘,因为聚合物很难向这类材料扩散。

五、静电理论

当胶粘剂和被粘物体系是一种电子的接受体-供给体的组合形式时,电子会从供给体(如金属)转移到接受体(如聚合物),在界面区两侧形成了双电层,从而产生了静电引力。

在干燥环境中从金属表面快速剥离粘接胶层时,可用仪器或肉眼观察到放电的光、声现象,证实了静电作用的存在。但静电作用仅存在于能够形成双电层的粘接体系,因此不具有普遍性。此外,有些学者指出:双电层中的电荷密度必须达到1021电子/厘米2时,静电吸引力才能对胶接强度产生较明显的影响。而双电层栖移电荷产生密度的最大值只有1019电子/厘米2(有的认为只有1010-1011电子/厘米2)。因此,静电力虽然确实存在于某些特殊的粘接体系,但决不是起主导作用的因素。

六、机械作用力理论

从物理化学观点看,机械作用并不是产生粘接力的因素,而是增加粘接效果的一种方法。胶粘剂渗透到被粘物表面的缝隙或凹凸之处,固化后在界面区产生了啮合力,这些情况类似钉子与木材的接合或树根植入泥土的作用。机械连接力的本质是摩擦力。在粘合多孔材料、纸张、织物等时,机构连接力是很重要的,但对某些坚实而光滑的表面,这种作用并不显著。

瑞奇推荐

瑞奇化工专业开发、生产各种环氧改性胺类固化剂,为客户提供环氧体系最佳的固化解决方案。瑞奇一直坚持用优质产品打动客户,保证客户依靠我们的原材料加工制造的产品是高质量和一致性的。

瑞奇通过配方设计,经过反复测试,款环氧固化剂用于工业胶黏剂得到众多客户的一致好评:

环氧固化剂R-2259D

类型:脂环胺改性固化剂

优点:A.色浅B.气味小C.固化快D.固化物硬韧性、耐化学药品性与机械性能优良。TG值70°C

R-2259D外观呈无色透明液体,色度(Gardner)指数小于等于1,在25℃的实验环境中,配合环氧当量180-190的双酚A型树脂,可使用时间(100g/25℃)仅需27分钟;薄膜干燥时间(15g/3mm/25°C)仅需1.6小时;固化硬度(15g/3mm/25°C)7小时.

环氧固化剂R-2259D可适用于:涂料、粘接剂、蓄电池极柱胶。

 

(特别提醒:本文来源于中国胶粘剂网,仅供参考、交流,如涉及图片侵权,请及时联系我们删除。)

关于我们

瑞奇创建于2002年,是一家集研发、生产、销售和服务为一体的全方位化工新材料企业。公司专业生产环氧改性胺类固化剂。已上市500多种产品,广泛应用于建筑材料、重防腐涂料、复合材料、胶粘剂、机电、陶瓷和石材等行业。

扫二维码用手机看

请先在网站后台添加数据记录。

更多动态

桥梁灌浆与环氧固化剂:构建与加固桥梁的关键要素

桥梁灌浆与环氧固化剂:构建与加固桥梁的关键要素

在现代桥梁工程领域,桥梁灌浆技术对于确保桥梁的结构完整性、耐久性以及安全性起着举足轻重的作用。而环氧固化剂作为桥梁灌浆材料中的核心成分之一,对灌浆材料的性能和最终的灌浆效果有着决定性的影响。本文将深入探讨桥梁灌浆技术的各个方面以及环氧固化剂在其中的关键作用与应用要点。
2024-11-29
土木工程裂缝修补、技术、材料与应用

土木工程裂缝修补、技术、材料与应用

本文深入探讨土木工程裂缝修补的重要意义、常见裂缝类型及其成因,详细阐述各类裂缝修补材料的特性与适用范围,并全面介绍多种裂缝修补方法及其施工要点。通过实际案例分析,展示不同修补方案在各类土木工程结构中的应用效果,旨在为土木工程领域的专业人士提供裂缝修补的系统知识与实践参考,以提升土木工程结构的耐久性与安全性。
2024-11-27
管道缠绕技术与环氧固化剂

管道缠绕技术与环氧固化剂

管道缠绕是一种用于保护管道、增强管道性能以及修复受损管道的方法。在缠绕过程中,其核心目标是在管道表面形成一层连续、稳定且具备特定功能的缠绕层。这一缠绕层需要与管道表面紧密贴合,以确保其能够有效地发挥作用。无论是为了防止管道受到外界环境中的腐蚀介质侵蚀,还是为了提高管道的耐压强度,缠绕层的质量都至关重要。
2024-11-18
环氧固化剂在工艺品制作中的应用与创新

环氧固化剂在工艺品制作中的应用与创新

在工艺品制作的广阔领域中,环氧固化剂正逐渐崭露头角,为艺术家和手工艺人带来了前所未有的创作可能性。它所具备的独特性能和多样的表现形式,使得工艺品不仅在外观上令人惊艳,更在质量和耐久性方面达到了新的高度。
2024-11-15

在线留言

ONLINE MESSAGE

留言应用名称:
客户留言
描述:
验证码

Copyright© 2021 瑞奇(广东)技术有限公司  版权所有  粤ICP备2021022874号   网站建设:中企动力广州